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HEAT TRANSFER IN ANNULAR PASSAGES.
SIMULTANEOUS DEVELOPMENT OF VELOCITY AND
TEMPERATURE FIELDS IN LAMINAR FLOW

H. S. HEATON,t W. C. REYNOLDS! and W. M. KAYS$

(Received 8 November 1963)

Abstract—An analysis is made of the problem of laminar flow heat transfer in an annulus with
simuitaneously developing velocity and temperature distributions and constant wall heat flux. A
solution is obtained first for the hydrodynamic problem, and then for the combined hydrodynamicand
thermal problem by an integral method. Results are tabulated for several inner to outer tube radius
ratios and Prandt] numbers. Experimental measurements made for Prandtl number = 0-7 showed
excellent agreement with the analysis. This paper is the fourth in a series culminating a four year study
of heat transfer in annular passages. ||
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NOMENCLATURE
area;
coeflicient in temperature profile;
coefficient in velocity profile;
factor in fully developed velocity pro-
file, (r*2 — 1)/In r*;
coefficient in temperature profile;
coefficient in velocity profile;

bei (), Thomson function;
ber (), Thomson function;
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coefficient in temperature profile;
coefficient in velocity profile;

constant used in equation (23);
specific heat at constant pressure;
hydraulic diameter, 2(r¢ — r¢);
normalized hydraulic diameter, Dx/ro;
coefficient in temperature profile;
factor defined in equation (10);
coefficient in temperature profile;
factor defined where used;

functions of x used in several equations;
convective heat transfer coefficient;
modified Bessel function of first kind
of order n;
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K, (), modified Bessel function of second kind

k,

of order n;
thermal conductivity;

kei (), Thomson function;
ker (), Thomson function;

factor in fully developed velocity pro-
file, 1 + r*2 — B;

Nusselt number, ADp/k;

Prandtl number, cpu/k;

pressure;

heat rate;

heat rate per unit area;

Reynolds number, u;; Dp/v;

radial distance;

normalized radial distance, r/r,;
radius ratio, ri/ro;

normalized distance to edge of thermal
boundary layer;

temperature;

axial velocity;

normalized velocity, w/um;

transverse velocity;

variable of integration defined in
equation (16);

axial co-ordinate;

normalized axial co-ordinate
(x/Dn)/(Re Pr);

integrand defined in equation (16);
transverse co-ordinate;

normalized axial co-ordinate,

(x/ Dg)/Re.
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Greek symbols
a, thermal diffusivity, &/pcp;

B, velocity profile parameter;
Yo, Bro;
yi,  Pri;
No» Aro;
6, dimensionless temperature,
(1 — t)/(q, Dulk);
A, temperature profile parameter;
iy viscosity;
v, kinematic viscosity, u/p;
'R density;
é, dimensionless temperature,
(t — tw)/(a,rolk), oF (t — tw)/(q, yolk).
Subscripts
c, location of maximum velocity;
e, entrance (x = 0);
1d, fully developed;
i, inner wall;
m, mixed-mean;
n, index (0, 1, 2, .. .);
0, outer wall;
W, wall (i or 0);
ii, inner wall conditions, when inner wall

alone is heated;
oo, outer wall conditions, when outer wall
alone is heated;

io, inner wall conditions, when outer wall
alone is heated;
oi, outer wall conditions, when inner wall

alone is heated;

mi,  mixed mean conditions, when inner wall
alone is heated;
mo, mixed mean conditions, when outer

wall alone is heated.

1. INTRODUCTION

THis paper is part of a series [1-3] on an extensive
study of convective heat transfer in an annular
passage. All the papers of the series up to now
have considered only fully developed flow in
the heated portion of the annulus. This paper
describes an analytical and experimental study
of heat transfer in an annulus in which
the velocity is uniform at the entrance and the
heating begins at the entrance. Thus both the
velocity and temperature distributions develop
simultaneously.

When fluid enters a duct from a large chamber,

a hydrodynamic boundary layer begins to de-
velop on the wall of the duct. As the fluid pro-
gresses downstream, the boundary layer on one
wall thickens until it begins to intercept the
boundary layer from the opposite wall. At this
point the boundary layers begin to loose their
identity and a non-varying velocity distribution
across the duct is approached. The thermal
boundary layer develops in a similar fashion.

Normally the hydrodynamic boundary layer
begins laminar and then undergoes transition to
turbulent flow at some distance downstream
depending on the Reynolds number, turbulence
intensity, type of inlet and several other factors.
If the turbulence intensity is low and the inlet
is smooth, the laminar flow may persist far
downstream, even for diameter Reynolds num-
bers much greater than the value of about 2100
commonly associated with transition in a tube.
For example, in the present study, laminar flow
in a circular tube was found to remain for 13
diameters at a Reynolds number of 27 000. For
a certain annulus, laminar flow was found to
remain for 11 times the hydraulic diameter with a
Reynolds number of over 29 000 with transition
occurring a little sooner on the inner wall than
on the outer wall. It can be seen that an in-
vestigation of heat transfer near the entrance of
a duct should include a consideration of laminar
flow.

The present study is restricted to laminar
incompressible flow. The assumption of in-
compressible flow along with the assumption
that other properties are not temperature de-
pendent allows an independent solution of the
hydrodynamic problem, since the momentum
and energy equations are not coupled.

With simultaneous development of both
velocity and temperature fields, the Prandtl
number becomes a more significant parameter
because its effect can no longer be included
entirely in the dimensionless axial variable. The
Prandtl number represents the ratio of momen-
tum diffusion to thermal diffusion and thus
indicates the relative growth of the hydrody-
namic boundary layer compared to the thermal
boundary layer.

The boundary conditions considered for this
problem are one wall heated and the other
insulated. This corresponds to the fundamental
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solution of the second kind according to the
nomenclature introduced in [1]. By superposi-
tion this may be extended to constant but
different heat flux on each wall.

The differential equations associated with this
problem are the continuity equation, the mo-
mentum equation, and the energy equation as
given below in cylindrical co-ordinates.

du v Oov
ax Tt a0 W
ou ou 1 op Pu 1 ou
“ox TUa T T oax 4m+;ﬂ @

ot ot &t 1 ot
" ”azaﬁﬁ+;a) S
The co-ordinate system is shown in Fig. 1.

These equations assume steady, laminar,
incompressible flow with constant fluid pro-
perties and negligible axial conduction, internal
energy generation, viscous energy dissipation,
and axial rate of change of radial shear stress.

Because the momentum equation (2) is non-
linear in u, it is difficult to solve by exact methods.
Instead, an approximate solution was obtained
for both the hydrodynamic problem and the
combined hydrodynamic and thermal problem
by an integral method. The results are obtained
for r* =0, 002, 0-05, 0-1, 0-25, 0-5, 1-0 and
Pr =001, 0-7, 10-0.

In addition to the theoretical work, an
experimental heat-transfer study was conducted
using air (Pr = 0-7) as a fluid for r* = 0-029,
0-058, 0-191, 0-255, 0-375, 0-500.

2. HYDRODYNAMIC ENTRY LENGTH PROBLEM

As yet, no exact solutions have yet been
obtained for developing flow in an annulus.
Murakawa [4] has obtained an approximate
entrance length solution for the annulus by a
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series solution. The final result only partially
satisfies the boundary conditions.

A number of approximate solutions have been
obtained for the circular tube and parallel
plates. A particularly simple solution for the
circular tube by the integral method was
obtained by Schiller [5] who assumed a para-
bolically varying velocity in the boundary layer
and a potential flow core. The flow became
fully developed abruptly when the boundary
layers met at the center. Sparrow [6] did a
similar solution for the parallel plates. Several
later modifications have been made to the
Schiller solution.

Another important integral method solution
was found by Langhaar {7] for the circular tube,
and later by Han [8] for the parallel plates.
Langhaar obtained a velocity profile defined over
the entire channel by linearizing the momentum
equation.

The method of Langhaar applied to the
annulus will be used here because of the
simplicity of a single expression for velocity
over the entire flow fleld for later use in the heat-
transfer solution. This method gives a velocity
profile which asymptotically approaches the
exact fully developed profile, and for the circular
tube and parallel plates gives reasonably accurate
results when compared to finite difference
solutions or experimental data.

The first step in obtaining the solution is to
determine a velocity profile expression for use in
the momentum integral equation. Far down-
stream from the entrance the momentum
equation (2) becomes,

Pu 1 ou

or2

19

= Tp = Const. 4
r or pox

The solution of this equation and boundary
conditions gives Lamb’s fully developed velocity

. 1%

U ~-TCORE TUBE

Fi1G. 1. Co-ordinate system.
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profile for the annulus expressed below in
dimensionless variables as,
o2 . i
uwﬂ(l—r + BlIn¥) &)
where B = (r*2 — 1)/Inr* M =1 - r¥*2 — B,
The left-hand side of (2) is non-zero in the
entrance region, and because it is non-linear in ,
serious difficulties arise in obtaining an exact sol-
ution. To allow an approximate solution in deter-
mining the developing velocity, it is assumed that
the left-hand side of (2) is a linear function of #in
the form u ou/dx -+ v dufor = Pu. The para-
meter B is assumed to be a function of x only
and will remain unknown for now. This linear-
izing assumption can be interpreted as assuming
the » du/ or term is relatively small and the veloc-
ity gradient du/éx is a function of x only. Over
most of the flow field, du/ox and 2u/or will be
roughly the same order of magnitude and v will
be small compared to u so that the assumption is
reasonable. The region where the assumption
is least accurate is very near the entrance and
close to the wall. Note, however, that this
assumption is made only to obtain a distribution
of velocity and that this assumption is not made
in the momentum integral equation which gives
the final solution.
With this simplification, (2) may be written as
3

Pu 1 ou
-3-;2’{‘; 5—192“ = f1(x) ©)

The function fi(x), which represents the pressure
gradient, can also be expressed as a function of

. The boundary conditions for (6) are
u{ryx) =0 (a) v{rx) =0 (d)
u(rox) =0 (b v{re,x) =0 ()
u(r0) =um (c)

Equation (6) can be represented as a form of
Bessel’s equation and the solution in terms of
vo == firo and other dimensionless variables may
be written as,

# = AvIo(‘}’of) + By Ko(ch) + Co (8)

The coefficients 4y, By, Cy are functions of y, and
r* only.

™
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The continuity integral equation

7 FdF = (1 — 7%2))2 ©

Y

may be found from equations (1), (7¢), (7d) and
(7e). Using (9) and boundary conditions (7a)
and (7b), the coefficients were found to be

Av == I/Dru

C’D = — B:}~K0(}’O) - Io(‘)/o)/,Dv

where

|
L (10)

vol1 (yo) — vil1 (vi)
Dy = — fo{Yo
G: =z L0

N [Io (va) — Lo (71)] [}’o Ki(yo) — yiKi (v0)
Ko (yo) — Ko (vi) (v — ¥)/2

+ Ko (’)’o)]

It can be shown by using asymptotic ex-
pansions for I, and K,, that for y, ~ oo and
x ~0; equation (8) becomes #~ 1. Using
series expansions for /; and K, it can be shown
that for y, ~ 0 and x ~ c0; equation (8) reduces
to (5). Thus the velocity profile (8) approaches
the limits exactly at the entrance and far down-
stream, and should provide an adequate
approximation in the developing region.

The problem that now remains is to find the
unknown 8 or y, as a function of axial distance
by means of the momentum integral equation.
To obtain the momentum integral equation, first
(2) is multiplied by r dr and then the result is
integrated across the flow cross section.

¥

f ou Ju
ju—a—;rdr—%JUE rdr =

143 *
*p

1{ep Pu 1 ou
—;Jardr+vj<m+;-5)rdr (11)

By means of the continuity equation (1) and
boundary conditions (7) the two terms on the
left of (11) can be shown to be identical. It is
assumed that p is a function of x only so that the
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first term on the right-hand side can be inte-
grated directly with dp/ox constant in the inte-
gration. At a certain radial location denoted by
subscript ¢, the axial velocity will reach a
maximum and therefore {(du/or). will be zero.
Equation (2) at this point reduces to

ou 1 (op 2u 1 ou
(2= =5 (@) (a3 ), 0

Since p is independent of radial location, then

dp (op
dx  \ox/.

and the pressure gradient can be found from

1 e & /2 Pu 1 ou

p ox _8x(2) -7 (E)rz+ r ar)c
Note that determining the pressure in this
maaner allows for viscous effects in the core and
does not assume a potential flow as in the
Schiller [5] method.

By substituting (13), and combining the two

right-hand terms and substituting dimensionless
variables, (11) becomes

1
1 d 1— re
e g2 s o 52
Dde”“"‘" (3 )}

r¥

1
_ 2@ oay 2
plEs Ealtn

r¥

(13)

1 ou
F o).
1 — ¥
() oo
The axial co-ordinate is now
xv x/D_h
D:Upn R
Equation (14) is the desired momentum integral
equation.
Substituting the velocity profile (8) into (14)
and evaluating the integrals, results in
dx 1
dZ Y

1s)
where

X = C2(1 — r*%) — (F2 — r*2 F9))2

— p¥2
2Cv(Fo—r*2F¢)—(Fc—}—Cv) (l r )

+y0 3
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Y =
1
‘1 — r*?
4[’)’0(FQ—F*F§)“"}/§;¢F(;( 2 )} (1‘—?'*)2
(16)

Fo = 4y I1 (v0) — By Ky (o)
Fi = Ay 1 (y)) — By Ky (v1)
Fo=4v1, (‘)’o f-c) + By Ko (’)’0’70)

The radius 7. at which 04/6F = 0 is determined
from the expression,

AvIi(yoFe) — By Ki(yo Fe) =0  (17)
Equation (15) can be integrated to give
X(Z)
Z= | YdX (18)
X(Z=0)

Because it was not feasible to solve (18) in closed
form, a numerical solution was made. To do this
it was necessary to find the values of X and Y at
Z == (0. Using asymptotic expansions for the
Bessel functions I, and K, equations (16) were
found to reduce to

o {1 — %2
§~(()1 d )/4}Fory-—>oo,2->0 (19)

It was impractical to try to find a solution of
the form y, = yo(Z), so instead a solution of the
form Z = Z{y,) was found. The solution was
carried out in the following way. For a series of
values of y, starting with as large a value as
possible and decreasing in steps close enough
together to maintain the required accuracy in
numerical integration, values of 4,, B, and
C, were calculated from (10), and by trial and
error, values of 7, were calculated from (17).
After calculating X and Y from (16), Z was
found from (18) by numerical integration. The
results of the calculation are shown in Table 1.
More detailed results are given in [9].

Some velocity profiles are shown in Fig. 2.
It can be seen clearly from Fig. 2 the increasing
asymmetry in the profile as the inner radius
becomes small. In the figure for r* = 0-001, the
fully developed profile for the circular tube is
shown for comparison. Near the center, the very
small core tube has a big effect on the velocity
profile because of the zero velocity boundary
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Table 1. Results of the hydrodynamic entry length solution for the annulus

r¥ =050 r¥ =025 1 r* = 010

Yo z re 7 z re e z re dic
50 00,1267 0-7468 1-0869 | 0-0,5234 06184 1-0563 | 0-0,3539 0-5390 1-0465
20 0-001020 0-7431 12333 | 00,4171 0:6099 1-1525 | 0-0,2729 0-5245 1-1245
10 0-003371 0-7393 1-3849 | 0-001798 0-5994 1-3015 | 0-001277 0-5052 1-2592
60 0-006088 0-7373 1-4545 | 0-003997 0-5914 1-4104 | 0-003209 0-4885 1-3842
40 0-008590 0-7364 1-4825 | 0:006405 0-5868 1-4673 | 0-005652 04777 1-4638
3-0 0-01046 0-7360 14932 | 0-008362 0-5847 1-4919 | 0-007813 0-4724 1-5028
2-0 0-01318 0-7358 1-5012 | 0-01134 0-5830 1-5116 | 0-01129 0-4679 15361
1-5 0-01530 0-7357 1-5040 | 0-01354 0-5824 1:5189 | 0-01396 0-4661 1-5492
1-0 0-01968 0-7356 1-:5061 | 0-01679 0-5819 1-5243 | 0-01792 0-4648 1-5591
0 s 0-7355 1-5078 o0 0-5815 1-5287 oo 0-4637 1:5673

r* = 005 r* =002 | r* = 0-001

Yo z Fe e z Fe e z Fe e
50 0-0,3151 0-5108 1-0439 | 0-0,2945 0-4917 1-0425 | 0-0,2810 04717 1-0415
20 0-0,2400 0-4919 1-1170 | 0-0,2221 0-4677 1-1128 | 00,2092 0-4357 1-1095
10 0-001144 0-4665 1-2465 | 0-001070 0-4352 1-2389 | 0-001021 0-3868 1-2328
60 0-003015 0-4438 1-3771 | 0-002932 0-4055 1-3744 | 0-002978 0-3413 1-3780
40 0-005551 0-4286 1-4680 | 0:005624 0-3852 1-4764 | 0-006135 0-3101 1-5015
30 0-007903 0-4209 1-5152 | 0-008232 0-3748 1-5323 | 0-009424 0-2945 1-5754
20 0-01181 0-4143 1-5573 | 0-01271 0-3659 1-5841 | 0-01535 0-2812 1-6479
1-5 0-01487 04116 1-5743 | 0-01627 0-3623 1-6055 | 0-02021 0-2761 1-6790
1-0 0-01944 0-4097 1-5873 ‘ 0-02163 0-3597 1-6220 | 0-02762 02722 1-7036
0 o 0-4080 1-5982 | ® 0-3574 1-6361 0 0-2690 1:7248

condition on the wall, while near the outer
wall the profiles are nearly identical.

In Fig. 3 is shown maximum velocity as a
function of the axial distance parameter for
various radius ratios. Also shown as a dotted
line is the fully developed condition defined by
e/ (fi)ra = 099.

3. THERMAL ENTRY LENGTH PROBLEM

The common method of solving the thermal
entry length problem in ducts with fully de-
veloped flow is by the method of separation of
variables. This method is not applicable to the
case of developing flow because here the velocity
is a non-separable function of the two co-ordinate
variables.

Several approximate solutions have been
obtained for the parallel plates and circular
tube. A finite difference solution has been
obtained by Kays [10] and Goldberg [11] for
the circular tube. Shibahayasi and Sugino [12]
have obtained a solution for the circular tube
assuming the boundary layer is thin. Sparrow

[6], and Siegel and Sparrow [13], have obtained
solutions for the parallel plates by an integral
method using a temperature profile similar to
that used by Schiller [5] for the hydrodynamic
boundary layer. Han [14] has also solved the
parallel plate problem by an integral method,
but he found a temperature profile in a way
similar to that used by Langhaar [7] to find the
developing velocity profile.

Murakawa [4] has obtained a solution for
arbitrary wall temperature at the inner wall of
the annulus by an integral method. The de-
veloping velocity and temperature profiles used
were quite simplified and only applicable near
the inner wall. The resulting solution did not
show all the effects of radius ratio nor did it
approach the fully developed solution.

The solution obtained here is by an integral
method using a temperature profile found by
the same general technique used to find the
velocity profile. The method is in many respects
similar to that used by Han [14] for the parallel
plates.
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FiG. 2. Developing velocity profiles for the annulus.

To find the temperature profile in the develop-
ing region, equations (1), (2) and (3) will be
solved approximately in terms of an unknown
parameter which can be determined from the
energy integral equation. The boundary con-
ditions first considered are for the inner wall
heated with a constant heat flux and the outer
wall insulated. These can be expressed for
t(x, r) as,

t{0,r) =1, ]

ot .

2 () = — gk
or . (20)
5; (x, ro) =0

H (OO, r) = frq J

Far downstream from the entrance where both

temperature and velocity are fully developed,
equations (2) and (3) can be combined to give,

@n

769
20 b
£ o= 0e2s
0
15
8
-
- A
R A\
o AR
/// Yo 2% \ \
\\\
\WH
i
05 !
/ \
| \l
|
| \
o
0 0-5 {0
E=r
ber
where
2 19
Vi=mmtis
Defining a new temperature variable
t— 1
2= 22
¢ o (22
and substituting into (21) gives
V2V2$ = ¢; = Const. 23)

The solution to this equation and boundary
conditions is

B Dy r* -8, .
¢fd"M(l+r*)(l—r*)2{ 7 (=7
B M
I A S

l+Inr*

p¥4
P e
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FiG. 3. Maximum velocity variation in the entry
region of an annulus.

For developing conditions when equations (2)
and (3) are similarly combined, there are several
more terms which make it virtually impossible
to obtain a direct solution for a temperature
profile. To simplify the resulting equation in a
manner similar to that used for determining the
velocity profile, the additional terms are approxi-
mated by a linear function ¢ and ¢; becomes a
function of x that will be called fa(x). The
approximate equation becomes,

Vv — o (1) — Mg

The parameter A is assumed to be a function of
x only and will remain as an unknown for now.
The physical interpretation and justification
of this approximation is not as clear as it is for
the velocity problem. However, the purpose here
is to obtain a reasonably accurate variation of
temperature in the developing region to be used
in the energy integral equation, which satisfies
the boundary conditions, initial conditions,
and fully developed conditions. The resulting
temperature does satisfy the necessary conditions
and does appear to give an excellent approxi-
mation to the developing region except for a
slight irregularity which is accounted for later.
An earlier attempt was made to find a tempera-
ture distribution using a polynomial, but it was
found that for small radius ratios, so many
terms in the polynomial were required to give a
reasonable result that it was impractical.

(25)

Checking the profile at the limits, for A =0,
(25) becomes identical to (23) so that ¢ = .
For A-> oo, it can be shown that ¢ approaches
zero so that this represents the profile at the
entrance. Thus for x ~0; A~ oo, and for
x~o0; A~0. The parameter A for the
temperature profile has a similar behavior as 8
for the velocity profile.

Substituting dimensionless variables and
70 == Are into (25), (20) and (3) gives the differ-
ential equation and boundary conditions neces-
sary to find the temperature profile.

@ 1d) /[ 1d$ B
(et 73 (gt g) + o =h e @9
=0 )

o
oF at i = r¥
02 1o
Tt
J L@
“ o
or
at 7 =
@ 104
T )

The function f3 (x) can be represented as a
function of 5,.

The homogeneous part of equation (26) is a
form of Bessel’s equation with solutions /o(no 7 1/i)
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Fic. 4. Developing temperature profiles for the annulus with the inner wall heated.

and Ko(ne F 4/1). These solutions are commonly
written in terms of the Thomson functions: ber,
bei, ker, kei. The solution to (26) then becomes

& = A ber (nof) + By bei (nof) + Ci ker (nof) +
+ Dikei (nof) + E: (28)

The coefficients As, Bi, Ci, D¢, E; are functions
of 5o, and r* and may be determined from the
boundary conditions (27). The equations for the
coefficients are rather lengthy and will not be
presented here. They are presented in detail in
[9] along with calculated numerical values.
Several temperature profiles calculated from
equation (28) are shown graphically in Fig. 4.

It is noted from Fig. 4 that the profiles near
the entrance are regular next to the inner wall,
but in the middle of the stream and near the
outer wall there is a slight dip in the profile. This
dip is contrary to the physical situation and is the
result of the approximation made in simplifying

the differential equation. In later work only that
part of the profile calculated from equation (28)
from the inner wall to where —¢ is maximum
will be used. This is in effect considering only
the part of the profile which represents the
effective thermal boundary layer. Outside the
boundary layer the fluid has not felt the heating
from the wall and is still at the initial tempera-
ture. When the boundary layer reaches the oppo-
site wall there is no difficulty with equation (28).
The energy integral equation may be found by
integrating the energy differential equation (3)
across the flow cross section and simplifying by
means of the continuity equation (1) and bound-
ary conditions. In terms of dimensionless vari-
ables, the energy integral equation may be
written as,
1

df _(t—t\_ . .=
diJ u(q;,re/k)rdrwr Dz
3

r

2%



772 H. S. HEATON, W. C. REYNOLDS and W. M. KAYS

The axial distance parameter convenient for the
thermal problem is

_ Xa x/Dh _Z

7 Dlum  RePr  Pr

There are two regions in which (29) may be
represented. First is the region in which the
effective thermal boundary layer described
earlier (the outside dimension is denoted by
Fm) has not yet reached the outer wall. It is
assumed in this region that the fluid outside the
boundary layer is at the inlet temperature.
Equation (29) in this region may be integrated
and written as

*Bg[fdmrdrw((ﬁ), ;L ;izir'dr'] (30)
where
B by, (LT
(‘?S)rrr.,. - q”ra/k q,{,ro/k

In the second region the effective thermal
boundary layer has reached the outer wall and
equation (28) applies across the entire cross
section. Equation (29) in this region may be
integrated and written as

1

g #7727
(3D

In this region the outer wall has begun to
increase in temperature so that ¢, % ¢, and a
different method must be used to get #; — 7, in
terms of é. At the point r = re; (Qu/or) =0
and v &~ 0, and equation (2) becomes

ot ) o [ek 1ot
“\ex). =™ “Nare 2 ),
Integrating (32) with respect to x and substituting
dimensionless variables gives

126 18]
Jzﬂ{ar2+r7r} ¥ —de
V]

t(;_ti
b= ik

X =

(32)

t,,*fe

a7 1ok (33)

where

Equations (31) and (33) give the necessary
equations for the second region.

The integrals in (30) and (31) were found by
substituting the velocity profile (8) and the
temperature profile (28) and then evaluating the
resulting 15 integrals. The final results of this
are given in [9].

It is desired now to find ¥ == %(y,) from
equations (30) and (31) and the hydrodynamic
solution which gives Z = Z(y,). The relation
between the axial co-ordinates Z and X is

. Z
X = P;‘ (34)
The solution was found by a trial and error
procedure. The general steps of this procedure
are, for a given Pr and r*:

(1) Choose a value of y, for which the hydro-
dynamic solution gives Z.

(2) Calculate ¥ from equation (34).

(3) Assume a value of 7, and using equations
(30) or (31), calculate x.

(4) Repeat step (3) until the value of ¥ agrees
with that found in step (2).

The final results are 5, and ¥ as a function of
yo for given values of Pr and r*. The tabulated
values of these variables along with the tempera-
ture profile (28) then give the solution to the
problem of the inner wall heated uniformly and
the outer wall insulated.

The mixed-mean fluid temperature is defined
by

rm:fturdr/furdr 3%
ri ri

In terms of dimensionless variables, the mixed-

mean fluid temperature may be written as

1 - - -

tn— 1 TL ¢ i Fdi

o= gk T (L)

The solution obtained here is the fundamental
solution of the second kind,

(36)

It
9., Dnjk’
according to the designation given in [1]. Since

only the solution of the second kind is con-
sidered here, the superscript (2) will be dropped.

0@ —
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The convenient representations of this funda-
mental solution consistent with those given in
[2] for fully developed velocity throughout are
given below in terms of the nomenclature used
here.

ti — I Pm
By — 0 e T 3
it m q. Dh//\’ 2(1 _ r*) ( 7)
“fo*tm_ ¢o_¢m
BOl_Bmi _([;/Dh/k_z(l _r*) (38)
Im — e 4r*x (39)

ik T
The Nusselt number defined by Nuy; = hys Dp/k,

where his = ¢, /(t; — tm) may be written in terms
of the fundamental solution variables as

1

Nugg =
B —

(40)

The circular tube and parallel plates represent
extremes of the annulus with 7* = 0 and r* = 1,
respectively (except for the zero velocity bound-
ary condition at the center of the circular tube)
and are included to give a solution for a complete
range of radius ratio. The solutions for these
geometries were not obtainable from the annulus
solution and had to be worked out separately.

The developing temperature profile for the
circular tube was found to be of the form

t - to

¢ = —— = A; ber (nof) + B; bei (nof) + E;
g, rolk

(41
Using the results of the hydrodynamic solution
of Langhaar [7], the thermal entry length
solution for the circular tube was found in a
similar method to that for the annulus. Likewise
the parallel plates developing temperature
profile was found to be
t— 1t

‘75 = 57
qoyo/k

+ Bt cos (7) sinh (nP) + Ci sin (n7) cosh (7)
+ D¢ cos (1)) cosh (7) + E: (42)

and the solution was found using Han’s [8]
hydrodynamic results. Note that the coefficients
A, Be, . . . are different for each case, but the
same symbols were kept to show the similarities.

Ay sin (9) sinh (n7) +

The details of the circular tube and parallel
plates solutions are given in [9].

To complete the constant heat flux problem
for the annulus, it is necessary to have a solution
for the outer wall heated and the inner wall
insulated. Then, by superposition, this solution
plus the previously obtained solution for the
inner wall heated and the outer wall insulated
will give a solution for constant but unequal
heat flux on both walls. The circular tube
solution for practical purposes is the solution
for an annulus with the outer tube heated and an
infinitely small insulated core tube. The parallel
plates solution represents a solution for an
annulus with outer and inner tube radii equal
and the outer wall heated and the inner wall
insulated (or vice versa). Thus the solutions for
the circular tube and parallel plates may be
considered extreme (r* =0 and r* = 1) solu-
tions of the annulus with the outer wall heated
and the inner wall insulated.

It was found that there was a relatively small
difference between the results of the solutions
for the circular tube and the parallel plates.
Both the solutions approach the flat plate
solution near the entrance and both approach
a constant and not greatly different dimensionless
temperature far downstream. Rather than carry
out a separate solution for the annulus with
heated outer wall and insulated inner wall, an
interpolation was made between the solutions for
the circular tube and the parallel plates. The
interpolation was made for a given radius ratio
by having the dimensionless wall temperature
be in the same proportion between the circular
tube and parallel plates solution in the develop-
ing region as it is for the fully developed con-
dition using the solution for fully developed
velocity and temperature given in [2]. The
dimensionless mean temperature is given by
Omo = 4 x/(1 4+ r*). It was in this way that a
solution was found for the annulus with outer
wall heated and inner wall insulated.

4. THEORETICAL HEAT-TRANSFER RESULTS
The temperature variables of the fundamental
solution of the second kind for the annulus are
tabulated in Table 2 as a function of %, r* and
Pr. The values given in the table were obtained
from the numerical results of the solution by
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Table 2 continued
r* = 0-50
Inner wall heated
E Pr = 1000 ; Pr =070 | Pr = 0:01 |
| x :

X Nuw  Ba—0me Bl E Nug  Bu—bm: Boi—Omi | Nusi Oii— i Boi—Omi O
0-00010 } e —_ —00,133 | 535 0-0186 00,133 | — —- —00,133 [ 00,1333
00010 | 1686  0-0592 —0-00133 * 1922 005203 —000133 i e — —0-00133 | 0001333
00025 ‘ 1260 00794 —0-00333 ' 1346 007429 —0-00333 ! — — —0-00333 | 0-003333
0-0050 | 1020 00980 —0-00667 | 10-47 009551 —0-00667 | — - —0-00667 | 0-006667
0010 | 843 01186 —00133 ! 852 01174 —-00133 - 943 01060 —0-0133 |0-01333
0025 | 693 01443 —0-0289 698 01433 —0-:0289 705 01418 00289 | 0-03333
0050 ' 635 01574 —0-0392 635 01575 00392 640 01563 —00392 | 0-:06667
010 619 01615 —0-0425 619 01616 —0-0425 622 01608 --0-0425 |0-1333
0-25 618 01618 —0-0428 6:18 01618 ~00428 | 618 01618 --0-0428 |0-3333

o0 618 01618 —0-0428 618 01618 - 0-0428 : 618 01618 -~ 00428 L

i )
Outer wall heated
Pr = 1000 Pr = 070 Pr = 0-01 ,

x Niutoa  Goo—0mo Bi0— Omo Nitoo  oo—0mo Oio—Omo ’Nuoo 900""9mn Bi0—0mo O
0-0010 40-0 0-0250 --0-0,267 | 525 0-0178 —00;267 | — — —00,267 | 0:0,2667
0-0010 1514  0-0660 —0-00267 | 18-3 0-0547 —0:00267 | 242 00413  —0-00267 | 0-:002667
0-0025 1094 00914 —0-00667 | 12:42  0-0805 -0-00667 | 159 00630 —0-00667 | 0-006667
0-0050 875 01143 —0-0133 945  0-1058 --0-0133 11-8 00847 —0-0133 [0-01333
0-010 709 01410 —0-0266 750 01334 —0.0267 890 O-1123 00267 | 0-02667
0-025 574 01741 —0-0568 591 01692 —0 0568 659 01518 —00630 | 0-06667
0-050 520 01925 —0-0784 527 01899 —0-0784 588 01702 —00820 01333
0-10 505 01979 —0 0851 506 01975 —0-0851 560 01786 —0-0855 | 02667
025 504 01985 —0-0855 504 01985 —0-0855 5-44 01837 —0-0855 | 06667

s 504 01985 —0-0855 504 01985 - (0855 504 01986 —0-0855 o

careful interpolation at convenient values of X to
aid in superposition. The inner tube heated
results were obtained directly from the analysis
while the outer tube heated results were obtained
from the circular tube and parallel plates solu-
tions as described previously. The results for the
circular tube and parallel plates are tabulated in
Table 3.

The results are presented in terms of the
nomenclature for the fundamental solution of
the second kind introduced in [1]. The format is
consistent with that of the results presented in
[2] for fully developed velocity throughout. This
latter solution may be interpreted as a develop-
ing velocity problem with Prandtl number very
large or approaching infinity. Thus the results

in [2] can be used conveniently to extend the
present solution to larger values of Prandtl
number.

In Fig. 5 are plotted the results of Nu as a
function of X for Pr = 0-7 with r* as a parameter.
Shown as a dotted line to the left is the solution
for a flat plate applied to the annulus variables
and with free stream velocity taken to be the
velocity outside the boundary layers. The dotted
lines to the right represent fully developed
solutions. Both the core tube and outer tube
heated solutions are represented. The curves
above r* = 1 represent the core tube heated and
those below represent the outer tube heated.
In Fig. 6 are shown the results of Nusselt
number for inner wall heated as a function of
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Table 3. Results of the heat-transfer analysis for the parallel plates and circular tube

Parallel plates (r* = 1-0)

Pr = 10-00 Pr =070 Pr =001
X Nugo  Oo0—0pmo Gio—0Omo Nuoo  Boo—bmo 0i0—0Omo Nuoo Ooo—08mo  b1o—0mo Bmo
0-00010 | 40-4 0-0248 —0-0,200 | 52-8 00172 —00;200 | — — —0-0,200 | 0-0;2000
0-0010 1556 0-0643 —0-00200 | 18-50  0-0541 —000200 | 242 00413  —0-00200 | 0-002000

0-0025 1146 00873 —0-00500 | 1260 00794 —0-00500 | 15-8 00633  —0-00500 | 0-005000
0-0050 920 01087 —0-0100 962 01040 —0-0100 | 11-7 00855 —0-0100 0-01000
0-010 7-49 01335 —0-0199 768 01302 —0:0200 8:80 01136 —0:0200 | 0-02000

0-025 609 01643 —0-0433 613 01631 —0-0433 648 01543  —0-0480 | 0-05000
0-050 5:55  0-1803 —0-0589 5-55 01802 —0-0589 577 01733 —0-0655 | 0-1000
010 540 01854 —0-0639 540 01854 —0-0639 553 0-1808 —0-0680 |0-2000
025 539 01857 —0-0643 539 01857 ~—0-0643 547 01828 —0-0660 . 0-5000
0 539 01857 —0-0643 539 01857 —0-0643 539 01857 00643 |

Circular tube (r*= 0)

Pr = 10-00 : Pr =070 Pr = 001
X Nuso  Ooo—8mo ch—ama Nuoco  8oo—0mo 80— Omo Nuoo 00— 8mo Boo—Omo Omo
0-00010 | 39-1 0-0256 —0-0,400 | 519 0-0193 —0:0,400 | — e —0-03400 | 0-0,4000
00010 14-34 00697 —0-00400 : 17-84  0-0561 —0-00400 | 242 00413  —0-00400 | 0-004000
0-0025 993 01007 —0-0100 f 12-08  0-0828 —0-0100 | 160 00625 —0-0100 | 0-01000
0-0050 7-87 01271 —0-0200 912 0-1096 —0-:0200 | 1220 00833 —0-0200 | 0-02000
0-010 632 01582 —0-0400 7-14 01401 —0-0400 910 01999  —0-0400 | 0-04000
0-025 507 01972 —0-0882 549  0-1821 —0-0882 6-80 01471  —0-0960 | 0-1000
0-050 4-51 0-222 —0-135 472 0212 —0-135 608 01645 —0-132 0-2000
010 438 0228 —0-143 4-41 0-227 —0-143 573 01745 —0-136 0-4000
0-25 436 0229 —0-146 436  0-229 —0-146 539 01855 —0-136 1-000
0 4-36  0-229 —0-146 436 0229 —0146 436 0229 —0-146 o
0% T L 0 LSOO M S SO At 4
s - : Pr=0-7 . -
Y R ; ; i ; [ — o e — —
Mo b o i
| i
2l FLAT PLATE ‘ ,‘ —
(\k LA : ,‘ : |
L . ‘ f ; e FULLY DEVELOPED,
L T3 :
Py S S \\
N
2
10
8 : 025
[ . - = =% T == 100 ]
o RS . - —o1 0907
2 I 1 ! ’ [
e T i e — AR
\ A et L N i 1 R
.5 2 4 68 - 2 4 © 8 2 . 4 68 " 2 4 68 2
o [oad 02 102 1ot

FiG. 5. Results of the heat-transfer analysis for Prandtl number = 0-7 and various radius ratios.
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FiG. 6. Results of the heat-transfer analysis for the inner wall heated with
radius ratio = 0-50 and various Prandtl numbers.

X for r* = 0-5 and Prandtl number as a para-
meter. The dotted line is Lundberg’s [2] fully
developed flow solution which represents the
limiting case as Pr — .

The heat-transfer results presented thus far
give the solution only for one wall heated and
the other wall insulated. By superposition [1]
these results may be extended to the case of each
wall heated with constant and unequal heat flux.
If the heat flux on each wall is given to be

q; = qi/As, 4y, = qolAo

then the mixed-mean fluid temperature and inner
and outer wall temperatures may be calculated
from,

~

‘D 7z 7
im :7; [q; 0m: + g, Omal + te

43)

Y

D re 27
= 7; [q; O + q, 8i0] + e

D r 7
ly == 7” [q,- Boi + g, 000] + e

o

5. EXPERIMENTAL HEAT-TRANSFER RESULTS

Wall temperature measurements were made
on the annulus apparatus described in [1]. The
apparatus consisted of 1 in and 2 in Inconel
outer tubes, and a 0-058 in stainless steel core
tube and ¢ in and % in Inconel core tubes,

giving a total of six different radius ratio annuli.
Air from a plenum chamber passed through two
screens and a smooth nozzle attached to the outer
tube giving an initial velocity which was uni-
form to -+2 per cent for the 2 in tube and
+0-5 per cent for the 1 in tube. Either the core
tube or the outer tube was heated electrically
from the entrance to produce a constant heat
flux to the air. The unheated tube was nickel-
plated to reduce radiation exchange between the
two tubes. The outer tube was insulated to
reduce heat loss to the surroundings.

The temperature, heat flux and fluid flow
measurements were reduced to Nug or Nuge as
a function of % In the data reduction a correc-
tion was made for radiation loss from the heated
wall and the fact that the unheated wall was
actually heated slightly by radiation from the
opposite wall. The heat-transfer results areshown
plotted in Figs. 7 and 8 for the inner wall heated.
The data for each radius ratio represent four or
five runs made with a Reynolds number varia-
tion of about 1000 to 5500. The solid line
represents the analysis.

The probable uncertainty in the experimental
results is about -9 per cent for the two larger
core tubes in the 2 in outer tube and about
46 per cent for the other tube combinations.
The greatest factor in the uncertainty comes
from predicting the radiation exchange between
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the two tubes. The emissivity was assumed to be
0-2 for the Inconel and stainless tubes and 0-1
for the nickel-plated Inconel tube.t As it turned
out the radiation correction was greatest for
r* == 0-191 and 0-255 and this is the reason for
the greatest uncertainty for these two annuli.
It is noted that the data scatter is also greatest
for these two annuli.

The experimental results generally agree with
the analysis well within the experimental
uncertainty. The excellent agreement between
the experimental data and the analysis show that
the results in Table 2 represent an accurate
solution for Pr = (-7 and provide confidence in
the solutions for other Prandt! numbers.

6. CONCLUDING REMARKS

The results of the heat-transfer analysis
provide a solution to the problem of heat
transfer in an annulus with constant heat flux
and simultancously developing velocity and
temperature distributions. Even though the
boundary conditions are for one wall heated
and one wall insulated, it is possible by super-
position to extend this to the case of constant
but unequal heat flux on each wall. The solution
as it stands cannot handle axially varying wall
heat flux, but using the same technique it could
be extended to do this.

The solution while it applies only to laminar
flow, can be very useful for some cases of turbu-
lent flow. Where heating begins from the en-
trance of an annulus, the presence of a short
length of laminar flow can cause initially higher
wall temperatures than predicted from turbulent
flow for constant wall heat flux. This was
observed experimentally.

In designing an annulus for turbulent flow,
special care must be taken if heating is to begin
at the entrance to avoid excessively high wall
temperatures in the laminar region.

+ A value of 0-35 was used for Inconel in [9]. A further
search of the available literature has shown 0-20 is a more
realistic value.
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Résumé—On analyse le probléme du transport de chaleur en écoulement laminaire dans un conduit
annulaire avec des distributions de vitesse et de température se développant en méme temps et un
flux de chaleur pariétal constant. On obtient d’abord une solution du probléme hydrodynamique et
ensuite du probléme combiné hydrodynamique et thermique par une méthode intégrale. Les résultats
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sont mis sous la forme de tableaux pour plusieurs rapports du rayon du tube intérieur a celui du tube
extérieur et plusieurs nombres de Prandtl. Les mesures expérimentales faites pour le nombre de
Prandtl 0,7 montraient un accord excellent avec I’analyse théorique. Cet article est le quatriéme d’une
série terminant une étude de quatre années sur le transport de chaleur dans les conduits annulaires.

Zusammenfassung—Das Problem des Wirmetiiberganges bei Laminarstrdomung in einem Ringraum,
in dem sich bei konstanter Wirmestromdichte gleichzeitig ein Geschwindigkeits- und ein Temperatur-
feld aufbaut, wird analytisch untersucht. Nach einer Integralmethode erhilt man erst eine Losung
fir das hydrodynamische Problem und dann fiir die Kombination des hydrodynamischen mit dem
thermischen Problem. Die Ergebnisse fiir verschiedene Verhiltnisse von Innen- und Aussendurch-
messer und verschiedene Prandtl-Zahlen sind tabelliert. Experimentelle Messungen fiir eine Prandtl-
Zah] von 0,7 ergaben sehr gute Ubereinstimmung mit der Analyse. Diese Arbeit ist die vierte einer
Reihe tiber eine vierjihrige Untersuchung des Wirmeiiberganges in Ringriumen.

AHHOTANUA—AHAIMBUPYETCA 3a]1a44 TeILIOOOMEHA (TP JTAMIHIIAPHOM TEYEHUH B KOJbIEROV
KaHajie NPH OJHOBPEMEHHOM pAa3BITHU TOJel CKOPOCTH M TeMIePATYPLL, U 1HOCTOAHHOM
TETIOBOM MOTORE HA cTeHke. [IyTeM HHTerpaIbHoro MeToIa MOJIYUEHO PellleHue JIIA THAPOI-
HaMudeckoll sagavyu, a TakKe LA COBMECTHOIl PupPOJIMHAMHYECKON H TeNmoBOH 3ajav.
Pesyabrarei npoTalyaMpOBaHBl A HECKOJIbKUX OTHOIEHHI BHVTPEHIMX PAJHYCOB I
BHENTHNM JITTA pasianyHeIX vices [Ipanaras. OrenepuMenTaitbible U3MEPeHist, 1IPOREIeHIbIe
e Pro= 0,7, 11okasann XOponyo cordacoBAHHOCTL ¢ TEOPeTHUECKUMI TAHHLIMU. ITa
CTATBA ABICTCA METHEPTOH B CePHN CTATel M HOAMTOMUBAGT HETHPEXICTHO H3YHEHDe
TEITOO0OMEHa B KOJABIIEBLIN 1KAHAMAX .
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