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HEAT TRANSFER IN ANNULAR PASSAGES. 

SIMULTANEOUS DEVELOPMENT OF VELOCITY AND 

TEMPERATURE FIELDS IN LAMINAR FLOW 

H. S. HEATON,t W. C. REYNOLDS: and W. M. KAYS§ 

(Received 8 November 1963) 

Abstract-An analysis is made of the problem of laminar flow heat transfer in an ammlus with 
simultaneously developing velocity and temperature distributions and constant wall heat flux. A 
solution is obtained first for the hydrodynamic problem, and then for the ccmbined hydrodynamic and 
thermal problem by an integral method. Results are tabulated for several inner to outer tube radius 
ratios and Prandtl numbers. Experimental measurements made for Prandtl number = 0.7 showed 
excellent agreement with the analysis. This paper is the fourth in a series culminating a four year study 

of heat transfer in annular passages. /I 

NOMENCLATURE 

A, area; 

At, coefficient in temperature profile; 

A, coefficient in velocity profile; 

& factor in fully developed velocity pro- 
file, (r*2 - l)/ln r*; 

Bt, coefficient in temperature profile; 

& coefficient in velocity profile; 
bei ( ), Thomson function; 
ber ( ), Thomson function; 

ct, 
CV, 
a, 
cm 
Dh, 
Dh, 
Dt, 
DV, 
Et, 
F, 

h2,3, 

h, 

AZ 0, 

coefficient in temperature profile ; 
coefficient in velocity profile; 
constant used in equation (23); 
specific heat at constant pressure; 
hydraulic diameter, 2(ro - rr); 
normalized hydraulic diameter, Dh/ro; 
coefficient in temperature profile; 
factor defined in equation (10) ; 
coefficient in temperature profile; 
factor defined where used; 
functions of x used in several equations; 
convective heat transfer coefficient; 
modified Bessel function of first kind 
of order n; 
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Kn ( ), modified Bessel function of second kind 
of order n ; 

k thermal conductivity; 
kei ( ), Thomson function; 
ker ( ), Thomson function; 

M, factor in fully developed velocity pro- 
file, 1 + r*2 1 B; _ 

_ _ 

I, 
4 

4 

0, 
x 

X, 
X, 

K 
Y, 
Z 

Nusselt number, h Dh/k; 
Prandtl number, c&k; 
pressure; 
heat rate ; 
heat rate per unit area; 
Reynolds number, U&h/v; 
radial distance; 
normalized radial distance, r/r,; 
radius ratio, t-z/r,; 
normalized distance to edge of thermal 
boundary layer; 
temperature; 
axial velocity ; 
normalized velocity, u/urn ; 
transverse velocity; 
variable of integration defined in 
equation (16) ; 
axial co-ordinate; 
normalized axial co-ordinate 

(xlDla)l(Re Pr) ; 
integrand defined in equation (16) ; 
transverse co-ordinate; 
normalized axial co-ordinate, 

(x/Dh)/Re. 
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Greek symbols 

a> thermal diffusivity, k/pep; 

A velocity profile parameter ; 

Yh 

Yi, 

1709 

F: 

0, dimensionless temperature, 

(t - te)/(q; D&) ; 
A, temperature profile parameter ; 

CL? viscosity; 

V, kinematic viscosity, p/p; 

P? density; 

4% dimensionless temperature, 

(j - Gl(q~rO/k), or (j - jw)l(qL~M). 

Subscripts 

C, 

$9 i, 
w 
n, 
0, 
W’, 

ii, 

oo, 

io, 

oi, 

mi, 

mo, 

location of maximum velocity; 
entrance (x = 0); 
fully developed ; 
inner wall ; 
mixed-mean ; 
index (0, 1, 2, . . .); 
outer wall; 
wall (i or 0) ; 
inner wall conditions, when inner wall 
alone is heated ; 
outer wall conditions, when outer wall 
alone is heated; 
inner wall conditions, when outer wall 
alone is heated ; 
outer wall conditions, when inner wall 
alone is heated; 
mixed mean conditions, when inner wall 
alone is heated; 
mixed mean conditions, when outer 
wall alone is heated. 

1. INTRODUCTION 

THIS paper is part of a series [l-3] on an extensive 
study of convective heat transfer in an annular 
passage. All the papers of the series up to now 
have considered only fully developed flow in 
the heated portion of the annulus. This paper 
describes an analytical and experimental study 
of heat transfer in an annulus in which 
the velocity is uniform at the entrance and the 
heating begins at the entrance. Thus both the 
velocity and temperature distributions develop 
simultaneously. 

When fluid enters a duct from a large chamber, 

a hydrodynamic boundary layer begins to de- 
velop on the wall of the duct. As the fluid pro- 
gresses downstream, the boundary layer on one 
wall thickens until it begins to intercept the 
boundary layer from the opposite wall. At this 
point the boundary layers begin to loose their 
identity and a non-varying velocity distribution 
across the duct is approached. The thermal 
boundary layer develops in a similar fashion. 

Normally the hydrodynamic boundary layer 
begins laminar and then undergoes transition to 
turbulent flow at some distance downstream 
depending on the Reynolds number, turbulence 
intensity, type of inlet and several other factors. 
If the turbulence intensity is low and the inlet 
is smooth, the laminar flow may persist far 
downstream, even for diameter Reynolds num- 
bers much greater than the value of about 2100 
commonly associated with transition in a tube. 
For example, in the present study, laminar flow 
in a circular tube was found to remain for 13 
diameters at a Reynolds number of 27 000. For 
a certain annulus, laminar flow was found to 
remain for 11 times the hydraulic diameter with a 
Reynolds number of over 29 000 with transition 
occurring a little sooner on the inner wall than 
on the outer wall. It can be seen that an in- 
vestigation of heat transfer near the entrance of 
a duct should include a consideration of laminar 
flow. 

The present study is restricted to laminar 
incompressible flow. The assumption of in- 
compressible flow along with the assumption 
that other properties are not temperature de- 
pendent allows an independent solution of the 
hydrodynamic problem, since the momentum 
and energy equations are not coupled. 

With simultaneous development of both 
velocity and temperature fields, the Prandtl 
number becomes a more significant parameter 
because its effect can no longer be included 
entirely in the dimensionless axial variable. The 
Prandtl number represents the ratio of momen- 
tum diffusion to thermal diffusion and thus 
indicates the relative growth of the hydrody- 
namic boundary layer compared to the thermal 
boundary layer. 

The boundary conditions considered for this 
problem are one wall heated and the other 
insulated. This corresponds to the fundamental 
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solution of the second kind according to the 
nomenclature introduced in [l]. By superposi- 
tion this may be extended to constant but 
different heat flux on each wall. 

The differential equations associated with this 
problem are the continuity equation, the mo- 
mentum equation, and the energy equation as 
given below in cylindrical co-ordinates. 

The co-ordinate system is shown in Fig. 1. 
These equations assume steady, laminar, 

incompressible flow with constant fluid pro- 
perties and negligible axial conduction, internal 
energy generation, viscous energy dissipation, 
and axial rate of change of radial shear stress. 

Because the momentum equation (2) is non- 
linear in U, it is difficult to solve by exact methods. 
Instead, an approximate solution was obtained 
for both the hydrodynamic problem and the 
combined hydrodynamic and thermal problem 
by an integral method. The results are obtained 
for r* = 0, O-02, 0.05, 0.1, O-25, 0.5, I.0 and 
Pr = O-01, 0.7, 10.0. 

In addition to the theoretical work, an 
experimental heat-transfer study was conducted 
using air (Pr = 0.7) as a fluid for r* = 0.029, 
0.058, 0.191, 0.255, 0.375, 0.500. 

2. HYDRODYNAMIC ENTRY LENGTH PROBLEM 

As yet, no exact solutions have yet been 
obtained for developing flow in an annulus. 
Murakawa [4] has obtained an approximate 
entrance length solution for the annulus by a 

FLOW - 

series solution. The final result only partially 
satisfies the boundary conditions. 

A number of approximate solutions have been 
obtained for the circular tube and parallel 
plates. A particularly simple solution for the 
circular tube by the integral method was 
obtained by Schiller [5] who assumed a para- 
bolically varying velocity in the boundary layer 
and a potential flow core. The flow became 
fully developed abruptly when the boundary 
layers met at the center. Sparrow [6] did a 
similar solution for the parallel plates. Several 
later modifications have been made to the 
Schiller solution. 

Another important integral method solution 
was found by Langhaar [7] for the circular tube, 
and later by Han 181 for the parallel plates. 
Langhaar obtained a velocity profile defined over 
the entire channel by linearizing the momentum 
equation. 

The method of Langhaar applied to the 
annulus will be used here because of the 
simplicity of a single expression for velocity 
over the entire flow field for later use in the heat- 
transfer solution. This method gives a velocity 
profile which asymptotically approaches the 
exact fully developed profile, and for the circular 
tube and parallel plates gives reasonably accurate 
results when compared to finite difference 
solutions or experimental data. 

The first step in obtaining the solution is to 
determine a velocity profile expression for use in 
the momentum integral equation. Far down- 
stream from the entrance the momentum 
equation (2) becomes, 

(4) 

The solution of this equation and boundary 
conditions gives Lamb’s fully developed velocity 

,r OUTER TUBE 

FIG. 1. Co-ordinate system. 
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profile for the annulus expressed 
dimensionless variables as, 

~2 = ;I (1 - J2 + B In ?) 

W. C. REYNOLDS and W. M. KAYS 

below in 

(5) 

where B = (,*2 - I)/ln r* A4 = 1 + r*z __ B. 
The left-hand side of (2) is non-zero in the 

entrance region, and because it is non-linear in u, 
serious difficulties arise in obtaining an exact sol- 
ution. To allow an approximate solution in deter- 
mining the developing velocity, it is assumed that 
the left-hand side of (2) is a linear function of u in 
the form u &/ax + u ~~~~r = /3%. The para- 
meter /3 is assumed to be a function of x only 
and will remain unknown for now. This linear- 
izing assumption can be interpreted as assuming 
the 21 au/ ar term is relatively small and the veloc- 
ity gradient au/ax is a function of x only. Over 
most of the flow field, au/ax and ~u/~r will be 
roughly the same order of magnitude and u will 
be small compared to u so that the assumption is 
reasonable. The region where the assumption 
is least accurate is very near the entrance and 
close to the wall. Note, however, that this 
assumption is made only to obtain a distribution 
of velocity and that this assumption is not made 
in the momentum integral equation which gives 
the final solution. 

With this simplification, (2) may be written as 
, 

!I$ + ‘, g - pu =fi(x) (6) 

The functionfr(x), which represents the pressure 
gradient, can also be expressed as a function of 
P. 

The boundary conditions for (6) are 

24 (Y~,x) = 0 (a) 

u (~0,s) := 0 (b) 

u (r.0) = % (c) 

v (RJ) = 0 (d) 

21(~4) = 0 (4 (7) 

Equation (6) can be represented as a form of 
Bessel’s equation and the solution in terms of 
y0 = /3r, and other dimensionless variables may 
be written as, 

ii = -4 10 (~4 + & K, (~oi) 4- G (8) 

The coefficients Av, B,,, Cv are functions of y. and 

The continuity integral equation 

j ii FdF --I; (1 - F*“)/2 
?-* 

(9) 

may be found from equations (l), (7~) (7d) and 
(7e). Using (9) and boundary conditions (7a) 
and (7b), the coefficients were found to be 

A, = l/Dv 1 
B IO (Yo) -- IO 64 

2, 

= _ 

Ko(yo) - Ko (,i,l (k) 1 (lo) 
Cv = - Bv .Ko (ro) - Io (yo)~D~ J 
where 

+ 
YO Kdyo) - yiK1 (yi) -- 

I[ 
-_ 

CY? - rfY2 

+ Ko (~0) I 
It can be shown by using asymptotic ex- 

pansions for 1, and Ko, that for y. - co and 
x - 0; equation (8) becomes ii - 1. Using 
series expansions for I,, and K. it can be shown 
that for y0 - 0 and x - co; equation (8) reduces 
to (5). Thus the velocity profile (8) approaches 
the limits exactly at the entrance and far down- 
stream, and should provide an adequate 
approximation in the developing region. 

The problem that now remains is to find the 
unknown ,4 or y. as a function of axial distance 
by means of the momentum integral equation. 
To obtain the momentum integral equation, first 
(2) is multiplied by r dP and then the result is 
integrated across the flow cross section. 

By means of the continuity equation (1) and 
boundary conditions (7) the two terms on the 
left of (11) can be shown to be identical. It is 

r* only. assumed that p is a function of x only so that the 
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first term on the right-hand side can be inte- 
grated directly with ap/ax constant in the inte- 
gration. At acertain radial location denoted by 
subscript c, the axial velocitv will reach a 
m~imum and therefore (~u/~~)~ will be zero. 
Equation (2) at this point reduces to 

Since p is independent of radial location, then 

and the pressure gradient can be found from 

Note that determining the pressure in this 
manner allows for viscous effects in the core and 
does not assume a potential flow as in the 
Schiller [5] method. 

By substituting (13), and combining the two 
right-hand terms and substituting dimensionless 
variables, (11) becomes 

(14) 

The axial co-ordinate is now 

xv XI& -- z==p& --- 
& ’ 

Equation (14) is the desired momentum integral 
equation. 

Substituting the veIocity profile (8) into (14) 
and evaluating the integrals, results in 

dX 1 -=_ 

where 
dZ Y 

X = C,z(l - r*e) - (F,2 - r*2 Ic,“)/Z 

(15) 

+ $$ (Fo - r*2 J’d - (Fc + C,> 

4 (F, - ~*&a) - y; 4 Fc (1 _ ,*)2 

(16) 

The radius Fc at which algae = 0 is determined 
from the expression, 

A, Ilk ?c) - Bv Kl (Yo ?c) = 0 (17) 

Equation (15) can be integrated to give 

X(Z) 

z =Q()) YdX (18) 

Because it was not feasible to solve (18) in closed 
form, a numerical solution was made. To do this 
it was necessary to find the values of X and Y at 
Z = 0. Using asymptotic expansions for the 
Bessel functions Zfi and &,, equations (16) were 
found to reduce to 

X N (1 - r*2)/4 
Y-O i 

Forr-+ oo,Z-+O (19) 

It was impractical to try to find a solution of 
the form y0 = yO(Z), so instead a solution of the 
form Z = Z&,) was found. The solution was 
carried out in the following way. For a series of 
values of y. starting with as large a value as 
possible and decreasing in steps close enough 
together to maintain the required accuracy in 
numerical integration, values of A,, Bv and 
C, were calculated from (lo), and‘by trial and 
error, values of Fc were calculated from (17). 
After calculating X and Y from (16), 2 was 
found from (18) by numerical integration. The 
results of the calculation are shown in Table 1. 
More detailed results are given in [9]. 

Some velocity profiles are shown in Fig. 2. 
It can be seen clearly from Fig. 2 the increasing 
asymmetry in the profile as the inner radius 
becomes small. In the figure for P* = O@Ol, the 
fully developed profile for the circular tube is 
shown for comparison. Near the center, the very 
small core tube has a big effect on the velocity 
profile because of the zero velocity boundary 
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Table 1. Resulis of the hydrodynamic entry length solution for the annulus 

r* = 0.50 

1.0829 
I .2333 
1.3849 
1.4545 
1.4825 
1.4932 
1.5012 
I.5040 
1.5061 
1.5078 

r* = 0.25 

5;” 
20 
10 
6.0 
4.0 
3.0 
2.0 
1.5 
1.0 

0 

0.0:1267 
0~001020 
0.003371 
OGbO88 
0.008590 
0.01046 
0.01318 
0.01530 
0.01968 

0.0,5234 0.6184 
0~0,4171 0.6099 

I 

I 

I 

I _/_ 

0.7268 
0.743 1 
0.7393 
0.7373 
0.7364 
0.7360 
0.7358 
0.7357 
0.7356 
0.7355 

z Ye 

0.001798 0.5994 
0+)03997 0.5914 
OGO6405 0.5868 
0.008362 0.5847 
0.01134 0.5830 
0.01354 0.5824 
0.01679 0.5819 

cc 0.5815 

l.O”,c,, 0.0,;539 o.,;c,o 
1.1525 0.0,2729 0.5245 
1.3015 0.001277 0.5052 
1.4104 0.003209 0.4885 
1.4673 0.005652 0.4777 
1.4919 0.0078 13 0.4724 
1.5116 0.01129 0.4679 
1.5189 0.01396 0.4661 
1.5243 0.01792 0.4648 
1.5287 m 0.4637 

5’0 
20 
10 
6.0 
4.0 
3.0 
2.0 
1.5 
1.0 

0 

0.0,;151 
0.0;2400 
0.001144 
0~003015 
oGO555 1 
0.007903 
0.01181 
0.01487 
0.01944 

cc 

r* = 0.05 

_ 
rc 

0.5108 
0.4919 
0.4665 
04438 
0.4286 
0.4209 
0.4143 
0.4116 
0.4097 
0.4080 

tic 
I ,0439 
1.1170 
1.2465 
1.3771 
1.4680 
1.5152 
1.5573 
I.5743 
1.5873 
1.5982 

r* = 0.02 

_ 

0.0,;945 0.4;, 7 
0.0,2221 0.4677 
0~001070 0.4352 
0.002932 0.4055 
0.005624 0.3852 
OGO8232 0.3748 
0.01271 0.3659 
0.01627 0.3623 
0.02163 0.3597 

co 0.3574 

ue 
I.0425 
1.1128 
1.2389 
1.3744 
1.4764 
1.5323 
1.5841 
1.6055 
1.6220 
1.6361 

condition on the wall, while near the outer 
wall the profiles are nearly identical. 

In Fig. 3 is shown maximum velocity as a 
function of the axial distance parameter for 
various radius ratios. Also shown as a dotted 
line is the fully developed condition defined by 
&/(i&)fd = 0.99. 

3. THERMAL ENTRY LENGTH PROBLEM 

The common method of solving the thermal 
entry length problem in ducts with fully de- 
veloped flow is by the method of separation of 
variables. This method is not applicable to the 
case of developing flow because here the velocity 
is a non-separable function of the two co-ordinate 
variables. 

Several approximate solutions have been 
obtained for the parallel plates and circular 
tube. A finite difference solution has been 
obtained by Kays [IO] and Goldberg [ll] for 
the circular tube. Shibahayasi and Sugino [12] 
have obtained a solution for the circular tube 
assuming the boundary layer is thin. Sparrow 

r* = 010 

r* = 0.001 

0.0,22810 o&7 
0.0,2092 0.4357 
0GO1021 0.3868 
OX02978 0.3413 
0036135 0.3101 
O+IO9424 0.2945 
0.01535 0.2812 
0.0202 1 0.2761 
0.02762 0.2722 

cc 0.2690 

Lit 
1 G465 
I.1245 
1.2592 
1.3842 
1.4638 
I.5028 
1.5361 
I-5492 
I.5591 
I.5673 

-e 
lit415 
1.1095 
1.2328 
1.3780 
1.5015 
1.5754 
1.6479 
I.6790 
1.7036 
I.7248 

[6], and Siegel and Sparrow [13], have obtained 
solutions for the parallel plates by an integral 
method using a temperature profile similar to 
that used by Schiller [5] for the hydrodynamic 
boundary layer. Han [14] has also solved the 
parallel plate problem by an integral method, 
but he found a temperature profile in a way 
similar to that used by Langhaar [7] to find the 
developing velocity profile. 

Murakawa [4] has obtained a solution for 
arbitrary wall temperature at the inner wall of 
the annulus by an integral method. The de- 
veloping velocity and temperature profiles used 
were quite simplified and only applicable near 
the inner wall. The resulting solution did not 
show all the effects of radius ratio nor did it 
approach the fully developed solution. 

The solution obtained here is by an integral 
method using a temperature profile found by 
the same general technique used to find the 
velocity profile. The method is in many respects 
similar to that used by Han [14] for the parallel 
plates. 
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c-3 0.5 I.0 0 o-5 I ‘0 
1 

.7_1 
T’-r* 

t-r* I _ r* 

FIG. 2. Developing velocity profiles for the annulus. 

To find the temperature profile in the develop- 
ing region, equations (l), (2) and (3) will be 
solved approximately in terms of an unknown 
parameter which can be determined from the 
energy integral equation. The boundary con- 
ditions first considered are for the inner wall 
heated with a constant heat flux and the outer 
wall insulated. These can be expressed for 
r(x, Y) as, 

t (0, r) = t& f 

; (x, ri) = - qi’/k 

;; (x, ro) = 0 
_ 

(20) 

t (co, r) = tfa 1 
Far downstream from the entrance where both 

temperature and velocity are fully developed, 
equations (2) and (3) can be combined to give, 

V2V2t = 11 at ap = Con& 

ap GaX (21) 

where 

aa 
v+J~ 

Defining a new temperature variable 

t - ts 

and substituting into (21) gives 

(22) 

VzV2~ = cr = Const. (23) 

The solution to this equation and boundary 
conditions is 

Dh r* 

‘ld = A4 (1 + r*> (1 - r*y I 
(?l-I&!? (?2 _ In f) 

+LL~~+$ I (24) 
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FIG. 3. Maximum velocity variation in the entry 
region of an annulus. 

For developing conditions when equations (2) 
and (3) are similarly combined, there are several 
more terms which make it virtually impossible 
to obtain a direct solution for a temperature 
profile. To simplify the resulting equation in a 
manner similar to that used for determining the 
velocity profile, the additional terms are approxi- 
mated by a linear function + and cl becomes a 
function of x that will be called fa(x). The 
approximate equation becomes, 

VW+ = fa (x) - x4+ (25) 

The parameter X is assumed to be a function of 
x only and will remain as an unknown for now. 

The physical interpretation and justification 
of this approximation is not as clear as it is for 
the velocity problem. However, the purpose here 
is to obtain a reasonably accurate variation of 
temperature in the developing region to be used 
in the energy integral equation, which satisfies 
the boundary conditions, initial conditions, 
and fully developed conditions. The resulting 
temperature does satisfy the necessary conditions 
and does appear to give an excellent approxi- 
mation to the developing region except for a 
slight irregularity which is accounted for later. 
An earlier attempt was made to find a tempera- 
ture distribution using a polynomial, but it was 
found that for small radius ratios, so many 
terms in the polynomial were required to give a 
reasonable result that it was impractical. 

Checking the profile at the limits, for X = 0, 
(25) becomes identical to (23) so that + = &d. 
For h -+ 00, it can be shown that $J approaches 
zero so that this represents the profile at the 
entrance. Thus for x - 0; X - co, and for 
x-CO; h - 0. The parameter X for the 
temperature profile has a similar behavior as /3 
for the velocity profile. 

Substituting dimensionless variables and 
v0 = hro into (29, (20) and (3) gives the differ- 
ential equation and boundary conditions neces- 
sary to find the temperature profile. 

a (27) 

i 

The function f3 (x) can be represented as a 
function of vO. 

The homogeneous part of equation (26) is a 
form of Bessel’s equationwith solutions 10(vO i z/i) 
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0 0.5 

7_ ,* 

I -r* 

0 0.5 I.0 
a 

r-r 

i-r* 

FIG. 4. Developing temperature profiles for the annuius with the inner wall heated. 

and &(Q, f 2/i). These solutions are commonly 
written in terms of the Thomson functions: ber, 
bei, ker, kei, The solution to (26) then becomes 

$ = At ber (qO?) + Bt bei (~7) + Ct ker (@) + 

+ Dt kei (q-2) + Et (28) 

The coefficients At, Bt, Ct, Dt, Et are functions 
of ?0 and r* and may be determined from the 
boundary conditions (27). The equations for the 
coefficients are rather lengthy and will not be 
presented here. They are presented in detail in 
[9] along with calculated numerical values. 
Several temperature profiles calculated from 
equation (28) are shown graphically in Fig. 4. 

It is noted from Fig. 4 that the profiles near 
the entrance are regular next to the inner wall, 
but in the middle of the stream and near the 
outer wall there is a slight dip in the profile. This 
dip is contrary to the physical situation and is the 
result of the approximation made in simplifying 

the differential equation. In later work only that 
part of the profile calculated from equation (28) 
from the inner wall to where -# is maximum 
will be used. This is in effect considering only 
the part of the profile which represents the 
effective thermal boundary layer. Outside the 
boundary layer the fluid has not felt the heating 
from the walI and is still at the initial tempera- 
ture. When the boundary layer reaches the oppo- 
site wall there is no difficulty with equation (28). 

The energy integral equation may be found by 
integrating the energy di~erential equation (3) 
across the flow cross section and simplifying by 
means of the continuity equation (1) and bound- 
ary conditions. In terms of dimensionless vari- 
ables, the energy integral equation may be 
written as, 
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The axial distance parameter convenient for the Equations (31) and (33) give the necessary 
thermal problem is equations for the second region. 

XCL XI& z 
2 z D3;;=-=.- 

RePr Pr 

There are two regions in which (29) may be 
represented. First is the region in which the 
effective thermal boundary layer described 
earlier (the outside dimension is denoted by 
i,) has not yet reached the outer wall. It is 
assumed in this region that the fluid outside the 
boundary layer is at the inlet temperature. 
Equation (29) in this region may be integrated 
and written as 

The integrals in (30) and (31) were found by 
substituting the velocity profile (8) and the 
temperature profile (28) and then evaluating the 
resulting 15 integrals. The final results of this 
are given in [9]. 

It is desired now to find 2 = X-(vO) from 
equations (30) and (31) and the hydrodynamic 
solution which gives Z = Z(yO). The relation 
between the axial co-ordinates Z and .7 is 

Z 
s = p;a 

The solution was found by a trial and error 
procedure. The general steps of this procedure 
are, for a given Pr and r* : 

(1) Choose a value of y0 for which the hydro- 
dynamic solution gives Z. 

(2) Calculate 2 from equation (34). 
(3) Assume a value of v0 and using equations 

(30) or (31) calculate 2. 
(4) Repeat step (3) until the value of .? agrees 

with that found in step (2). 

The final results are 70 and ,U as a function of 
y0 for given values of Pr and r*. The tabulated 
values of these variables along with the tempera- 
ture profile (28) then give the solution to the 
problem of the inner wall heated uniformly and 
the outer wall insulated. 

The mixed-mean fluid temperature is defined 

by 

t m _E 7 t u r dr/T u r dr (35) 
r, r, 

In terms of dimensionless variables, the mixed- 
mean fluid temperature may be written as 

where 

In the second region the effective thermal 
boundary layer has reached the outer wall and 
equation (28) applies across the entire cross 
section. Equation (29) in this region may be 
integrated and written as 

(31) 

In this region the outer wall has begun to 
increase in temperature so that to # te and a 
different method must be used to get ti - te in 
terms of 4. At the point r = r,; (ih/&) = 0 
and t’ M 0, and equation (2) becomes 

Integrating (32) with respect to x and substituting 
dimensionless variables gives 

$$$/$$+;$?!, d,t- +c (33) 

0 
where 

The solution obtained here is the fundamental 
solution of the second kind, 

according to the designation given in [I]. Since 
only the solution of the second kind is con- 
sidered here, the superscript (2) will be dropped. 
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The convenient representations of this funda- 
mental solution consistent with those given in 
[2] for fully developed velocity throughout are 
given below in terms of the nomenclature used 
here. 

eii _ emi = ti? = _ +rn 
q;( Dh/k 2(1 - r*) 

eoi _ ernt = tOmptm = ~_ $0 - +m 

qi’Dh/k 2 (1 - r*) 

4r*2 
orn = fm YI te = ~ 

qi’rdk 1 + r* 

(37) 

(38) 

(39) 

The Nusselt number defined by Nuii = hii Dh/k, 
where hrc = q;‘/(tz - tnl) may be written in terms 
of the fundamental solution variables as 

1 
Nuri = & _ emt 

The circular tube and parallel plates represent 
extremes of the annulus with r* = 0 and r* = 1, 
respectively (except for the zero velocity bound- 
ary condition at the center of the circular tube) 
and are included to give a solution for a complete 
range of radius ratio. The solutions for these 
geometries were not obtainable from the annulus 
solution and had to be worked out separately. 

The developing temperature profile for the 
circular tube was found to be of the form 

(41) 

Using the results of the hydrodynamic solution 
of Langhaar [7], the thermal entry length 
solution for the circular tube was found in a 
similar method to that for the annulus. Likewise 
the parallel plates developing temperature 
profile was found to be 

= At sin (vj) sinh (7J) + 

+ Bt cos (~j) sinh (73) + Ct sin (71) cash (up) 

+ Dt cos (+) cash (~j) + Et (42) 

and the solution was found using Han’s [8] 
hydrodynamic results. Note that the coefficients 
At, Bt, . . . are different for each case, but the 
same symbols were kept to show the similarities. 

The details of the circular tube and parallel 
plates solutions are given in [9]. 

To complete the constant heat flux problem 
for the annulus, it is necessary to have a solution 
for the outer wall heated and the inner wall 
insulated. Then, by superposition, this solution 
plus the previously obtained solution for the 
inner wall heated and the outer wall insulated 
will give a solution for constant but unequal 
heat flux on both walls. The circular tube 
solution for practical purposes is the solution 
for an annulus with the outer tube heated and an 
infinitely small insulated core tube. The parallel 
plates solution represents a solution for an 
annulus with outer and inner tube radii equal 
and the outer wall heated and the inner wall 
insulated (or vice versa). Thus the solutions for 
the circular tube and parallel plates may be 
considered extreme (r * = 0 and r* = 1) solu- 
tions of the annulus with the outer wall heated 
and the inner wall insulated. 

It was found that there was a relatively small 
difference between the results of the solutions 
for the circular tube and the parallel plates. 
Both the solutions approach the flat plate 
solution near the entrance and both approach 
a constant and not greatly different dimensionless 
temperature far downstream. Rather than carry 
out a separate solution for the annulus with 
heated outer wall and insulated inner wall, an 
interpolation was made between the solutions for 
the circular tube and the parallel plates. The 
interpolation was made for a given radius ratio 
by having the dimensionless wall temperature 
be in the same proportion between the circular 
tube and parallel plates solution in the develop- 
ing region as it is for the fully developed con- 
dition using the solution for fully developed 
velocity and temperature given in [2]. The 
dimensionless mean temperature is given by 
0 mo - ~ 4 T/(1 + r*). It was in this way that a 
solution was found for the annulus with outer 
wall heated and inner wall insulated. 

4. THEORETICAL HEAT-TRANSFER RESULTS 

The temperature variables of the fundamental 
solution of the second kind for the annulus are 
tabulated in Table 2 as a function of k, r* and 
Pr. The values given in the table were obtained 
from the numerical results of the solution by 
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Inner wall heated 

0&Gl10 
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oQO25 
oGO50 
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Pr = IO.00 Pr ~= 0.70 

N&i #ii-&Vi @“i -- @mi NUii 0ii-%mi &-@*a 
-.. - -0.0,133 .53,5 0.0186 - -0.0,133 

16.86 0.0592 -0GO133 19.22 0.05203 - oBO133 
12-60 0.0794 -0GO333 13.46 0.07429 -0-00333 
10.20 0.0980 -0~00667 10.47 0.0955 1 ~ O+lO667 
8.43 0.1186 -0.0133 8.52 0.1174 --0.0133 
6.93 0.1443 ~ 0.0289 6.98 0.1433 - 0.0289 
6.35 0.1574 ~ 0.0392 635 0.1575 0.0392 
6.19 0.1615 ~~ 0.0425 6.19 0.1616 ~ 0.0425 
6.18 0.1618 ~ 0.0428 6.18 0.1618 ~~ 0.0428 
6.18 0.1618 -0.0428 6.18 0.1618 0.0428 

^I_ _. 
Pr = 0.01 

hbaz eii- B,,~~ &-t&i 

- -- -- 0,0,133 
-- .- -0-00133 
- - 0.00333 
- -. -- OGO667 

9.43 0.1060 -0.0133 
7.05 0.1418 -~ 0.0289 
6.40 0.1563 ~ 0.0392 
6.22 0.1608 .~ 0.0425 
6.18 0.1618 0.0428 
6.18 0.1618 0.0428 

Outer wall heated 

--_-__ 

%mi 

0.0,1333 
0‘001333 
0.003333 
Of)06667 
0.01333 
0.03333 
0.06667 
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0.3333 

,% 

--..-_. 

0.00”10 
om10 
0.0025 
om50 
0.010 
0.025 
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0.25 
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NUO, %o”-%,,,i %io-%fno NU,,, &Jo-%m, ho -- h,,” 
40.0 0.0250 --0.0,267 52.5 0.0178 --0.0,267 
15.14 0.0660 - 0.00267 18.3 0.0547 - 0.00267 
10.94 0.0914 0.00667 12.42 0.0805 -~ 0.00667 
8.75 0.1143 0.0133 9.45 0.1058 --0.0133 
7.09 0.1410 - 0.0266 7.50 0.1334 ~ 0.0267 
5.74 0.1741 ~ 0.0568 5.91 0.1692 ~ 0 0568 
5‘20 0.1925 -0.0784 527 0.1899 - 0.0784 
5.05 01979 -0 0851 5.06 01975 -00851 
5.04 0.1985 -0.0855 5.04 0.1985 -0.0855 
5.04 0.1985 -0.0855 5.04 0.1985 - 0.0855 

Pr- 1000 Fr -= 0.70 

careful interpolation at convenient values of ,? to 
aid in superposition. The inner tube heated 
results were obtained directly from the analysis 
while the outer tube heated results were obtained 
from the circular tube and parallel plates solu- 
tions as described previously. The results for the 
circular tube and parallel plates are tabulated in 
Table 3. 

The results are presented in terms of the 
nomenclature for the fundamental solution of 
the second kind introduced in [l]. The format is 
consistent with that of the results presented in 
[2] for fully developed velocity throughout. This 
latter solution may be interpreted as a develop- 
ing velocity problem with Prandtl number very 
large or approaching infinity. Thus the results 

Pr = 0.01 

JUO” &,o - f-h 0 

- - 

24.2 0.0413 
15.9 0.0630 
11.8 0.0847 
8.90 0.1123 
659 0.1518 
588 0.1702 
5.60 0.1786 
5.44 0.1837 
5.04 0.1986 

%i,-%,, ! B,,J 
-0,0,267 / 0,0,2667 
-0Gl267 0.002667 
-0.00667 OGI6667 
~~0.0133 1 0.01333 
-- 0.0267 0.02667 
- 0.0630 0.06667 
-0~0820 / 0.1333 
--0.0855 ’ 0.2667 
-0.0855 0.6667 

-“.os55 j m 

in [2] can be used conveniently to extend the 
present solution to larger values of Prandtl 
number. 

In Fig. 5 are plotted the results of NU as a 
function of B for Pr = O-7 with r* as a parameter. 
Shown as a dotted line to the left is the solution 
for a fiat plate applied to the annulus variables 
and with free stream velocity taken to be the 
velocity outside the boundary layers. The dotted 
lines to the right represent fully developed 
solutions. Both the core tube and outer tube 
heated solutions are represented. The curves 
above r* = 1 represent the core tube heated and 
those below represent the outer tube heated. 
In Fig. 6 are shown the results of Nusselt 
number for inner wall heated as a function of 
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Table 3. Results of the heat-transfer analysis for the parallel plates and circular tube 
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kxJ--&n0 &,--8m, 
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FIG. 5. Results of the heat-transfer analysis for Prandtl number = 0.7 and various radius ratios. 
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FIG. 6. Results of the heat-transfer analysis for the inner wall heated with 
radius ratio = 0.50 and various F’randtl numbers. 

1 for I* = 0.5 and Prandtl number as a para- 
meter. The dotted line is Lundberg’s [2] fully 
developed flow solution which represents the 
limiting case as Pr 3 0~. 

The heat-transfer results presented thus far 
give the solution only for one wafl heated and 
the other wall insulated. By superposition [I] 
these results may be extended to the case of each 
wall heated with constant and unequal heat flux. 
If the heat flux on each wall is given to be 

9;’ = qi/Ai, q: = golAo 

then the mixed-mean fluid temperature and inner 
and outer wall temperatures may be calculated 
from, 

5. EXPERIMENTAL HEAT-TRANSFER RESULTS 

Wall temperature measurements were made 
on the annuius apparatus described in [I]. The 
apparatus consisted of 1 in and 2 in Inconel 
outer tubes, and a O-058 in stainless steel core 
tube and $ in and 3 in Inconel core tubes, 

giving a total of six different radius ratio annuli. 
Air from a plenum chamber passed through two 
screens and a smooth nozzle attached to the outer 
tube giving an initial velocity which was uni- 
form to 12 per cent for the 2 in tube and 
10.5 per cent for the 1 in tube. Either the core 
tube or the outer tube was heated electrically 
from the entrance to produce a constant heat 
flux to the air. The unheated tube was nickel- 
plated to reduce radiation exchange between the 
two tubes. The outer tube was insulated to 
reduce heat loss to the surroundings. 

The temperature, heat flux and fluid flow 
measurements were reduced to Nuzr or Nu,, as 
a function of k. In the data reduction a correc- 
tion was made for radiation loss from the heated 
wall and the fact that the unheated wall was 
actually heated slightly by radiation from the 
opposite wall. The heat-transfer results are shown 
plotted in Figs. 7 and 8 for the inner wall heated. 
The data for each radius ratio represent four or 
five runs made with a Reynolds number varia- 
tion of about 1000 to 5500. The solid line 
represents the analysis. 

The probable uncertainty in the experimental 
results is about f9 per cent for the two larger 
core tubes in the 2 in outer tube and about 
16 per cent for the other tube combinations. 
The greatest factor in the uncertainty comes 
from predicting the radiation exchange between 
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Frr,. 7. Comparison of the heat-transfer artalysls w&n the experimental results for 
the inner wall heated and radius ratio - 0429, O-191. 0375. 

/ I 
.-.a .A_, 

22 

FIG. 8. Comparison of the heat-transfer analysis with the experimental results for 
the inner wall heated and radius ratio - 0458, 0.255, 0~500. 
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the two tubes. The emissivity was assumed to be 
0.2 for the Inconel and stainless tubes and 0.1 
for the nickel-plated Inconel tube.t As it turned 
out the radiation correction was greatest for 
Y* ‘I-- 0.191 and 0.255 and this is the reason for 
the greatest uncertainty for these two annuli. 
It is noted that the data scatter is also greatest 
for these two annuli. 

The experimental results generally agree with 
the analysis well within the experimental 
uncertainty. The excellent agreement between 
the experimental data and the analysis show that 
the results in Table 2 represent an accurate 
solution for Pr =: 0.7 and provide confidence in 
the solutions for other Prandtl numbers. 

6. CONCLUDING REMARKS 

The results of the heat-transfer analysis 
provide a solution to the problem of heat 
transfer in an annulus with constant heat flux 
and simultaneously developing velocity and 
temperature distributions. Even though the 
boundary conditions are for one wall heated 
and one wall insulated, it is possible by super- 
position to extend this to the case of constant 
but unequal heat Aux on each wail. The solution 
as it stands cannot handle axially varying wall 
heat flux, but using the same technique it could 
be extended to do this. 

The solution while it applies only to laminar 
flow, can be very useful for some cases of turbu- 
lent flow. Where heating begins from the en- 
trance of an annulus, the presence of a short 
length of laminar flow can cause initially higher 
wall temperatures than predicted from turbulent 
flow for constant wall heat flux. This was 
observed experimentally. 

In designing an annulus for turbulent flow, 
special care must be taken if heating is to begin 
at the entrance to avoid excessively high wall 
temperatures in the laminar region. 

t A value of 0.35 was used for fnconel in [9]. A further 
search of the available literature has shown 0.20 is a more 
realistic value. 
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R&me-On analyse le probleme du transport de chaleur en tcoulement laminaire dans un conduit 
annulaire avec des distributions de vitesse et de temperature se dtveloppant en m&ne temps et un 
flux de chaleur par&al constant. On obtient d’abord une solution du probleme hydrodynamique et 
ensuite du probleme combine hydrodynamique et thermique par une methode intCgrale. Les resultats 
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sent mis sous la forme de tableaux pour plusieurs rapports du rayon du tube interieur & celui du tube 
extCrieur et plusieurs nombres de Prandtl. Les mesures expCrimentales faites pour le nombre de 
Prandtl 0,7 montraient un accord excellent avec l’analyse theorique. Cet article est le quatrikme d’une 
s&ie terminant une etude de quatre an&es sur le transport de chaleur dans les conduits annulaires. 

Zusammenfassung-Das Problem des WBrmeiiberganges bei Laminarstriimung in einem Ringraum, 
in dem sich bei konstanter W&mestromdichte gleichzeitig ein Geschwindigkeits- und ein Temperatur- 
feld aufbaut, wird analytisch untersucht. Nach einer Integralmethode erhtilt man erst eine Liisung 
fiir das hydrodynamische Problem und dann fiir die Kombination des hydrodynamischen mit dem 
thermischen Problem. Die Ergebnisse fiir verschiedene Verhgltnisse von Innen- und Aussendurch- 
messer und verschiedene Prandtl-Zahlen sind tabelliert. Experimentelle Messungen fiir eine Prandtl- 
Zahl von 0,7 ergaben sehr gute Ubereinstimmung mit der Analyse. Diese Arbeit ist die vierte einer 

Reihe fiber eine vierj2hrige Untersuchung des Wiirmeiiberganges in RingrCumen. 


